If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-84x-9261=0
a = 3; b = -84; c = -9261;
Δ = b2-4ac
Δ = -842-4·3·(-9261)
Δ = 118188
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{118188}=\sqrt{1764*67}=\sqrt{1764}*\sqrt{67}=42\sqrt{67}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-42\sqrt{67}}{2*3}=\frac{84-42\sqrt{67}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+42\sqrt{67}}{2*3}=\frac{84+42\sqrt{67}}{6} $
| 157=3d+34 | | -6-z=3 | | 36.05=7g+3.71 | | 28x-16=4(7x-4) | | 8n+25=97 | | -3(a+6)=6(a-9) | | (4y+6)-(5+3y)=2 | | -4-(-4n-1)=3(n-3) | | -4x+11+5x=4x+x+7 | | 3x+8=275 | | 2(m+6)+3m=-4m-6(-2+m) | | 1(x)=7x+8 | | 3(7x-11)=6x+12 | | X+4x+6x=682 | | 1/11x+1/3=3/7-10/11x+3/7 | | 8+97/n=25 | | 6(x12=36-10x | | 31-4x=5-5(1+5x) | | 4x+10=8x-18 | | 5(m+5)=5(-m+5) | | -60=12p | | 12(y+1)+8=9(y-1)+26 | | -8-9x=85 | | 1.6q-4.8-2.9q=-2.3q-1.2 | | 7(x-10)-2(x+5)=4x-7+6x-3 | | 2x^2-4x-64=0 | | -2x+3=-2x+2 | | 4c-26+16c=14c+10-12c | | 2.7=4.5-0.2x | | 125m−100m+42,975=45,450−200m | | -9n+8=-8n-11 | | 12=-m-3-4m |